arXiv:2405.13218v2 [cs.CV] 24 May 2024

Computational Tradeoffs in Image Synthesis:
Diffusion, Masked-Token, and Next-Token Prediction

Maciej Kilian™ Varun Jampani™ Luke Zettlemoyer*
TStability Al #University of Washington

Abstract

Nearly every recent image synthesis approach, including diffusion, masked-token
prediction, and next-token prediction, uses a Transformer network architecture.
Despite this common backbone, there has been no direct, compute controlled
comparison of how these approaches affect performance and efficiency. We analyze
the scalability of each approach through the lens of compute budget measured
in FLOPs. We find that token prediction methods, led by next-token prediction,
significantly outperform diffusion on prompt following. On image quality, while
next-token prediction initially performs better, scaling trends suggest it is eventually
matched by diffusion. We compare the inference compute efficiency of each
approach and find that next token prediction is by far the most efficient. Based on
our findings we recommend diffusion for applications targeting image quality and
low latency; and next-token prediction when prompt following or throughput is
more important.

1 Introduction

Following the work of [Peebles and Xie| [2023]], deep image synthesis, including diffusion [Sohl;
Dickstein et al.| 2015, |Song and Ermonl, [2019} [Song et al., [2020, |[Ho et al., 2020, Rombach et al.,
2022, [Esser et al.,2024], masked-token prediction [Chang et al., 2022, [2023| |Villegas et al., 2022, |Yu
et al.,2024]], and next-token prediction [Gafni et al., 2022, |Yu et al.| 2022b|, [Esser et al., [2021]], are all
build on a common Transformer architecture [[Vaswani et al., 2023]]. Although these approaches are
all known to scale well with compute and data, there has been relatively little controlled comparisons
of their relative training and inference efficiency. Comparing these latent image synthesis approaches
is challenging since the objectives they optimize often have different requirements which limit the set
of applicable modules for each approach and influence their optimal configurations. For example,
next-token prediction requires discrete input data which makes it unfit for continuous latent space
regularization advances. In fact, latent image synthesis will be strongly influenced by the state of
autoencoding research, often in an unbalanced way. Examples of this can be found in Section 2]

In this paper, we measure the computational tradeoffs between popular transformer-based latent image
synthesis approaches - diffusion, masked-token prediction, and next-token prediction. We investigate
the impact of the autoencoder, which encodes the latent space, on generative results and train a large
grid of models with the different approaches, model sizes, and dataset sizes. Samples from some of
our most capable models can be found in Figure[] Our findings indicate that (i) at smaller compute
budgets, next-token prediction yields the best image quality but scaling trends suggest it is eventually
matched by diffusion. (ii) Token-based approaches achieve superior controllability. (iii) The quality
of the autoencoder impacts the FID more than the CLIP score of diffusion models trained on its
latent space. (iv) We find preliminary evidence for improved diffusion training practices. Based
on our findings, we recommend diffusion models for applications targeting low latency and high
image quality; and next-token prediction for applications where prompt following and throughput are
priorities.

Preprint. Under review.

Figure 1: Images generated using our best models. Top row is from a next-token prediction model,
bottom row is from a diffusion model. Both models are XL size and trained for 500k steps.

2 Related Work

Scaling transformer-based generative models. Scaling compute budgets for transformer based
generative models is a predictable method for improving performance. |Kaplan et al.|[2020]], Hoffmann
let al.| [2022], [Clark et al.|[2022]] showed that for text, final training loss can be accurately predicted
as a power law of training compute which depends on model size and dataset size. Following those
practices many capable text generation models were trained [Touvron et al., 2023} [Brown et al.| 2020

Rae et al.L 2022]. Similar results have been found for vision [Zhai et al., 2022, |Alabdulmobhsin et al.
2024, [Esser et al., 2024, [Dehghani et all,[2023]] and even mixed modal data [Aghajanyan et al.,[2023].

We follow these intuitions and analyze image synthesis performance as a function of compute budget.

Latent generative modeling. Training latent generative vision models has emerged as an efficient
alternative to the computationally intensive modeling of high-dimensional pixel space. Studies have
demonstrated the advantages of imposing specific structural regularizations within the latent space
for enhancing the performance of various generative models. For instance, [Rombach et al.| [2022]]
observed that latent diffusion models operating in VAE-style Kingma and Welling|[2022] latent spaces,
when regularized towards a standard Gaussian structure, outperform models trained with alternative
regularization techniques. |Yu et al.| [2024], Mentzer et al.| [2023]], [Yu et al.| [2022a] have shown
that simplifying vector quantization methods can mitigate common issues such as poor codebook
utilization and enhancing the transfer between autoencoder reconstruction quality and downstream
generative model performance for token-based approaches. demonstrated that
employing hierarchical next-scale latents enables transformers using next token prediction to leverage
their in-context learning capabilities more effectively, significantly improving performance.
[2024] use image latents dynamically sized based on their information content which allows
generative models to allocate more computational resources to complex samples, as these will contain
more tokens. We minimize potential bias coming from autoencoding asymmetries by studying the
impact of the autoencoder on the generative model trained on top of it.

3 Background

Autoencoding To train latent generative models, we establish an encoder-decoder pair (€, D).
For an image x € RT*Wx3 the encoder maps x to a latent representation z = &(x), where
z € RH/FxW/fxe and f = 2mEN represents the factor of dimensionality reduction. The decoder
then reconstructs & = D(z), aiming for high perceptual similarity to x, effectively making z a
perceptually compressed representation of the input. To avoid high-variance latent spaces and ensure
structured representations, we employ regularization methods classified into two main types: discrete
and continuous. The regularization function q for a continuous regularizer maps R — R?, while a
discrete regularizer maps q : R? — {0,1,2,..., N}, making the latent space finite. In the following
subsections we use z € R**? to denote the flattened representation output by the encoder &. p(z) is
the latent data distribution we are interested in estimating using our generative models. We recover
images by inputting sampled latents into the corresponding decoder D.

Next token prediction In the context of sequences of discrete tokens represented as z €
{0,1,2,..., N}*, we employ the chain rule of conditional probability to decompose the target
distribution into a product of conditional distributions which are tractable since the range of z; is
finite. To model this distribution, we use a neural network f, parameterized by weights 6. The

parameters are optimized by minimizing the negative log-likelihood £ .
n
p(z) = Hp(zi|2i—17 ey 21) Lyt = Ei[-log p(zi|2<i; 0)] ()
i=1

Sampling from our learned distribution begins with an empty sequence (in practice, a "start of text"
token is sampled with 1.0 probability). We then sample the first token unconditionally and append it

to our sequence. The process continues by iteratively evaluating the conditionals and sampling from
them, with each step increasing the sequence length by one.

Masked token prediction Masked token prediction is a form of iterative denoising and can
be viewed as a discrete diffusion process. In this process, tokens progressively transition to an
absorbing [MASK] state according to a probability defined by a noise schedule y(¢) € (0, 1] where
t ~ U(0,1). This transition can also be mathematically expressed as a product of conditionals,
except in a perturbed order o, and implemented as a neural network. Here, o (i) is a surjective
function mapping [0, N] — [0, N]. We follow (Chang et al.|[[2022} |2023] where o(i) = o(i,t)
such that p(o(i,t) < j) = v(t) meaning the likelihood a token can be attended to is independent
of position. In this formulation, we utilize a truncated arccos distribution for our noise schedule:
() =2(1- t2)=2. To apply this method, we generate a mask tensor M € {0, 1}* by sampling
t ~ U(0, 1) and m; ~ Bernoulli((t)). The tensor M is applied elementwise to the latents, replacing
z; with the [MASK] token if m; = 1; otherwise, z; remains unchanged. Denote the resultant noised
sequence as z)s. The network is then trained to minimize the masked token loss £ ;7.

p(z) = H (2520 (i)<;5) Loyt = Ei m,=1[—log p(zi| 237 6)] ()
i,0(i)=3j
Sampling from the distribution starts with a fully masked sequence and iterates through a discretized
noise schedule t; = i/N over N desired steps. At each step, the model estimates p(z|zy;) for
sampling, followed by re-noising using y(¢;11). This iterative re-noising and sampling process is
repeated N times to yield the final sample.

Diffusion We adopt the flow matching framework outlined by |[Lipman et al.| [2023]], focusing on
models that map samples from a noise distribution p; to a data distribution py using continuous
trajectories governed by an ordinary differential equation (ODE). Furthermore, we enforce straight
paths between the terminal distributions (by setting c; = 1 — ¢ and [3; = t) since this has been shown
to perform well at scale [Esser et al., 2024]].

doi(x) = vi(Pr(x)) dt $o(z) =z 2 =aiwo + Be, e~ N(0,1) (3)

Here, v; : [0,1] x RY — R? represents a time-dependent vector field, which we aim to parameterize
using a neural network @ and ¢, : [0, 1] x R? +— R? is the flow. To optimize our weights, we regress
the vector field u;, which generates our paths z; by employing conditional flow matching which we
reformulate as a noise-prediction objective Lo pps. Sampling is performed by using an ODE solver
to solve Equation in reverse time, utilizing our trained neural network vg (z, t).

1
Leorm(xo) = Etwu(t),e~N(0,1) m”69(ztvt) - €||2

4 Experimental Setup

Data We train both the autoencoders and the generative models on a large web dataset of image
and text pairs at 256x256 resolution. For the conditioning we use the pooled text embedding of the
OpenCLIP bigG/14 model from|Cherti et al.|[2022]. Once the autoencoders are trained we pre-encode
the entire dataset with them for improved training speed.

Evaluation metrics Since we are in the infinite data regime, we look at the final train loss and do
not compare across objectives since the losses represent different quantities. We also look at CLIP
score [Radford et al.| 2021} |[Hessel et al.l 2022]] and FID computed on CLIP features [Sauer et al.,
2021] based on the decoded samples & = D(z).

Regularizer Latent space capacity rFID ({)

Model size Layers N Hidden sized Heads

KL 16 channels 1.060
KL 8 channels 1.560 i/{ éi 170622 ié
KL 8 channels 2.856

L 24 1536 16
KL 4 channels 2.410 XL 32 2304 32
LFQ 16384 vocabulary 2.784

Table 2: Transformer configurations. Base trans-

Table 1: Autoencoders. Reconstruction met- former hyperparameters for models we train. Com-
rics for differently regularized and trained autoen- 16 across all approaches

coders (downsampling f = 8). "es" is early stop-
ping to match the LFQ autoencoder.

Autoencoding We study well-established autoencoder configurations that have proven effective
without special handling for each data type. We adhere to the training and architectural guidelines
provided by Rombach et al.|[2022]. Each autoencoder is trained with a downsampling factor f = 8§,
reducing 256 x 256 images to a 32 x 32 grid of latents. For continuous variants, q(z) implements a
KL penalty aiming towards the standard normal distribution [Kingma and Welling| |2022| Rombach
et al.| 2022, while for discrete variants, we utilize lookup-free quantization (LFQ) [Yu et al., 2024].
Further details on the selection of discrete regularizers are available in Appendix [A] To circumvent
potential challenges associated with large vocabulary sizes, as highlighted by Yu et al.| [2024]], our
LFQ-regularized autoencoder is trained with a vocabulary size of 16384 [Esser et al.,|2021]]. Assessing
the comparability of autoencoders is difficult since there are many variables of interest such as the (1)
information capacity of the latent space; (2) compute used to train the autoencoder; (3) reconstruction
quality achieved by the autoencoder. To explore the influence of these factors on the performance of
generative models, we train a set of autoencoders similar to those in |[Esser et al.|[2024]], which exhibit
a range of information capacities and reconstruction qualities. Additionally, we experiment with
targeting specific reconstruction qualities, irrespective of other factors, by training a KL-regularized
autoencoder with early stopping to match the reconstruction quality of our discrete autoencoder
within a certain threshold ¢|'] Table[1]provides detailed information about the autoencoders.

Autoencoder ablation. We train an L-size diffusion model on top of the latent space of each
continuous autoencoder. We then evaluate the models using the metrics described in Section [4]and
plot them against the number of training steps. Results are shown in Figure 2] We find that the
autoencoder’s reconstruction quality has a consistently significant impact on the FID score, while its
effect on the CLIP score diminishes with larger dataset sizes, where the models tend to yield similar
results. This trend likely emerges because improvements in autoencoder quality enhance perceptual
reconstruction metrics similar to FID, rather than affecting language or semantic capabilities. Upon
examining the number of channels in the autoencoders, our findings concur with those reported by
Esser et al|[2024], indicating that leveraging larger and better latent spaces requires more compute
and model capacity. Additionally, the model trained on our early-stopped autoencoder’s latent space
performed significantly worse than the 4-channel autoencoder, which achieves similar reconstruction
quality. This confirms the importance of latent space structure for overall performance. Building on
these insights, we have chosen to use the 4-channel autoencoder for our main diffusion experiments.
This model most closely matches the latent space capacity and reconstruction quality of our discrete
autoencoder, while also ensuring that the latent structure is adequately developed to support the
diffusion model trained on it. Although more advanced autoencoders have been developed—such
as those featuring increased channel counts or expanded codebook sizes—our primary focus in this
study is to maintain comparability across objectives.

4.1 Network Architecture

Backbone. We opt for the transformer architecture as our primary network backbone, recognizing
its capability to scale effectively with computational resources and its status as the state-of-the-art
(SOTA) across all evaluated approaches. Configuring a transformer involves many decisions, such as
choosing normalization methods, feed-forward layer configurations, positional embedding schemes,

Discrete autoencoders typically have worse reconstruction qualities since the information bottleneck is
tighter. This can be shown by comparing log(codebook size) to num_channels * sizeof(dtype) for common
values of these quantities. In our case we needed to stop at 75k steps vs. 1M for the discrete autoencoder.

Autoencoder Metrics
+ 4channels
e 8channels
@® 16 channels

rFID = 1.060
rFID = 1.560
. FID = 2.410
. FID = 2.856

0.240 ! 907
0235
0.230
o2
o
S 0.220
(&)
0.215

0.210

0.205

100k 200k 300k 400k 500k 100k 200k 300k 400k 500k
Training Steps Training Steps
Figure 2: Impact of autoencoder quality on diffusion models. We train L-size diffusion models on
our set of continuous latent space autoencoders. The choice of autoencoder has more impact on FID
than CLIP score. Effectively using a larger latent space requires more compute and model capacity.

Model n-parameters (%) Forward TFLOPs Objective Conditioning FID CLIP
DiT-S 131.13 M (97.2%) 0.2133 NT adaL.Nzero 83.052 0.2213
DiT-M 459.19 M (98.7%) 0.7234 NT in context 88.176 0.2041
DiT-L 1031.67 M (98.8%) 1.5485 NT cross attention 92.852 0.2062
DiT-XL 3083.69 M (99.2%) 4.4901

NT/MT-S 153.73 M (82.9%) 0.2261 MT adalNzero 97.021 0.2164
NT/MT-M 494.56 M (92.9%) 0.6631 MT in context 100.646 0.1925
NT/MT.L 1072.14 M (95.1%) 1.3421 MT cross attention 103.221 0.1960
NT/MT-XL 3137.29 M (97.5%) 3.7166

Table 4: Conditioning method ablation. Results
Table 3: Model forward pass costs. Number of for different objectives and conditioning methods.
parameters and FLOPs used in each forward pass adalLNzero conditioning is used for the remainder
for all models we trained. DiT - Diffusion Trans- of experiments. NT - Next-token; MT - Masked-
former; NT - Next-token; MT - Masked-token token.

conditioning methods, and initialization strategies. Given the prohibitive cost of exploring all possible
hyperparameters, we adhere to established practices in recent studies.

Design differences. For approaches utilizing discrete representations, we primarily follow the
configurations used in the LLaMa model [Touvron et al.| 2023|], incorporating SwiGLU feed-forward
layers with an expansion ratio of %4 and rotary positional embeddings [Su et al.| |2023||]. An exception
is made for masked token prediction, where learned positional embeddings are preferred to address
positional ambiguities that degrade performance near the center of the image. For continuous
representation approaches, we align with diffusion transformers [Peebles and Xiel 2023]], employing
GELU feed-forward layers with an expansion ratio of 4 and learned positional embeddings. All
models use QK-normalization [Dehghani et al., 2023]] for better training stability.

Conditioning ablation. We choose to ablate the conditioning method, as it significantly impacts the
computational cost of model operations. Adaptive layer normalization (AdaLLN) [Perez et al.,[2017]]
has shown promise in latent image synthesis for both continuous [Peebles and Xiel |2023]] and discrete
[Tian et al.l 2024] settings. To validate this choice in the discrete context, we conduct small-scale
ablations on S-size models, comparing AdaLLNzero [Peebles and Xiel 2023, with two other common
conditioning methods: prepending a projected embedding in the context of the transformer and
cross-attention. The outcomes of these ablations are presented in Table] informing our choice of
conditioning method for subsequent experiments.

Compute cost. To assess the computational cost of each model, we first standardize a set of
hyperparameters across all transformers, detailed in Table 2] We then calculate the forward pass
FLOPs for a single sample (a sequence of 1024 embeddings) for each approach and model size,
and present them in Table (3] Assuming the backward pass is twice the cost of the forward pass, we
compute the training FLOPs for each model as (1 4 2) x (forward FLOPs) x D, where D represents
the total number of training samples.

4.2 Training

Each approach also has associated training hyperparameters which past work has found to work well
and for the same reasons as stated in we follow them.

Optimization and conditioning. For diffusion experiments we follow Esser et al.|[2024]] and use a
constant learning rate schedule with a maximum value of 1~*. For next and masked token prediction
we use a cosine decay learning rate with a maximum value of 32 which decays down to 37°. All
models have a linear learning rate warmup lasting 1000 steps up to the maximum value. We use
the AdamW [Loshchilov and Hutter, [2019]] optimizer with 81 = 0.9, 82 = 0.95, decay=0.01, and
epsilon=1e-15 for improved transformer training stability [Wortsman et al.,2023]]. All models are
trained at bf16-mixed precision [Chen et al.| 2019]. We intend to use classifier free guidance (CFG)
[Ho and Salimans|, |2022]] during sampling so we randomly drop conditioning 10% of the time during
training. Since its inexpensive and does not influence training, for all models, we store a copy of the
model weights which gets updated every 100 training batches with an exponential moving average
(EMA) using a decay factor of 0.99 and during evaluation we evaluate both sets of weights.

Training steps. For each objective and model size we scale to at least 250k training steps with a
batch size of 512. For diffusion we decide to go up to 500k steps since constant learning rate schedule
allows more flexibility with dataset sizeﬂ Occasionally we train models for longer to attempt to
illustrate convergence or crossing points.

4.3 Sampling

Classifier free guidance. Ho and Salimans|[2022] introduced it in diffusion models as an elegant way
of trading off diversity for fidelity and has been demonstrated to improve results for all approaches
we consider in this study [[Chang et al.| 2023} |Gafni et al.} 2022, Ho and Salimans| [2022]]. We use it
here in the form

g = (14 w)z. — wa,)

where w is the guidance scale. For diffusion x will be the position in the denoising trajectory and for
token based methods z is the logit distribution at a given timestep.

Hyperparameters. For our diffusion models we follow [Esser et al.|[2024]] and use 50 sampling steps
with a CFG scale of 5. Since the conditioning and input data is slightly different we also perform a
small sweep around those parameters to confirm they are still optimal. For the token based models we
could not find good resources on reasonable sampling hyperparameters so we perform small sweeps
for S-size models to find the best configurations and verify the robustness of those values for larger
models. Common between them, we use nucleus sampling [Holtzman et al.|[2020] with a top-p value
of 0.9 and a temperature of 1.0. For next token prediction and masked token prediction we use CFG
scales 8 and 5 respectively. For masked token prediction we perform 10 sampling steps.

5 Results

5.1 Training tradeoffs

For all models, we measure our evaluation metrics every 50k steps of training and plot them in log
scale against the log of training compute. Figure 3| presents this for FID and CLIP score. There we
can see that for FID, next token prediction starts out more compute efficient but scaling trends suggest
that its eventually matched by diffusion. When looking at CLIP score we see that token prediction is
significantly better than diffusion, implying the models generate images that follow the input prompt
better. This could be a feature of using more compressed latent spaces which is supported by Figure
[2]where the 4 channel continuous autoencoder outperforms both the 8 and 16 channel autoencoder on
CLIP score near the end of training. This is also supported in Figure[7] with interpretable features
like human faces emerging sooner in the token based methods. Extending a finding from Mei et al.
[2024]], we observe that, for all approaches studied, smaller models trained for longer often surpass
larger models. In Figure [d] we show the final training loss of each model against training compute
to show that it follow similar scaling trends to what has been shown in past work on scaling deep
neural networks, briefly described in Section[2] Samples from the most capable XL sized next-token
prediction and diffusion models can be found in Figure

*With a decaying learning rate, each dataset size we want to study requires a separate run from scratch
whereas for constant learning rate schedules you can simply continue from a past checkpoint

Approach
0.26 100 e diffusion

® next-token
0.25 % ® masked-token
80 Model Size
0.24 S

70
~0.23

n- \ .
= 60
Qo0.22
50
0.21

0.20 40

FID({)

108 10° 108 10°
Training TFLOPs Training TFLOPs

Figure 3: Training compute efficiency on perceptual metrics. Performance on CLIP and FID
scores for various models and dataset sizes across different image synthesis approaches. On FID,
next-token prediction is initially the most compute-efficient but scaling trends suggest it is eventually
matched by diffusion. Token-based methods significantly outperform diffusion in CLIP score. Both
axes are in log scale.

next-token - Ifg_2p14 masked-token - Ifq_2p14 diffusion - kl_ch4_sdxI diffusion - All autoencoders
0.77
&7 8.0 w
6.6 0.76 0.7
a
o 6.5 7.9 0.75
- 6.4 0.6
c ora Tl
— 7.8
© 63 d_che_es
E ., 0.73 05
= . 7.7
6.1 0.72
LIE_ 0.4
6.0 76 0.71 w
5.9 ®

10® 10° 108 10° 108 10° 108 10°

Training TFLOPs

Figure 4: Training compute efficiency on final loss. All objectives follow predictable scaling trends.
Right plot shows the difference in loss scale between diffusion models trained on top of different
autoencoders. FLOPs axis is in log scale.

5.2 Inference tradeoffs

Inference cost. We evaluated all models trained for 250k steps to understand the impact of inference
FLOPs on perceptual metrics. To adjust the number of inference FLOPs for a single model, we
varied the number of sampling steps, applicable only to iterative denoising methods like masked
token prediction and diffusion. As shown in Figure[5] next-token prediction demonstrates far greater
inference compute efficiency compared to other objectives. This efficiency arises because when using
key-value caching, sampling N tokens autoregressively uses the same amount of FLOPs as forwarding
those N tokens in parallel once. However, for iterative denoising methods, this value is multiplied by
the number of sampling steps. Interestingly, despite being trained for iterative denoising, the number
of steps in masked token prediction appears to have minimal impact on sample quality.

Sampling latency and throughput. While next-token prediction requires much less compute per
sample, the autoregressive dependency of each token causes it to be data bound when few queries
are being processed in parallel which results in high latency. Conversely, bidirectional denoising
approaches utilize a more parallel sampling process which, despite its high cost, facilitates low
latency especially in low-volume settings with models that fit on local devices [Chang et al., [2022].
For high-volume sampling, where throughput becomes more important, such as serving many users
via an API, next token prediction could use a batching algorithm to maximize GPU utilization by
choosing batch sizes inversely proportional to sequence lengths. The effectiveness of this method
is ensured by the fact that, for next-token prediction image synthesis, all responses are the same
length so you can easily plan your batches ahead. This way, for high-volume sampling, next-token
prediction would enjoy the same benefits over the other approaches as presented in the cost section
above but for sample throughput.

0.251

120

Approach

diffusion
next-token
masked-token

0.241 100

Model Size
S
M
L

\
—_

10° 10! 102
Inference TFLOPs

80

CLIP (1)
FID (1)

ettty

0.221 60

10° 10! 102
Inference TFLOPs

Figure 5: Inference compute efficiency on perceptual metrics. Diffusion and masked token
prediction evaluated at 4, 10, 20, 50, and 100 sampling steps. Next token prediction is 1 forward pass
factorized over each token individually. Masked token prediction isn’t influenced by the number of
sampling steps very much. Next token prediction is the most compute efficient. Both axes are in log
scale.

next-token - M next-token - L next-token - XL next-token - M next-token - L next-token - XL

0.0000 o

- o —
v e 00004 000025 ° ™ . o . " oslq o
© 0.0002 0.00000 \ ol % 00 °o—0 00 ®.
find o—0 o0—0— ¢
< ® 00000 o279 -oo00zs po < e 00 o *—@
] 100c 200 100c 200k 1006 200k bl 100k 2001 100c 200k 100 200
] masked-token - M masked-token - L masked-token - XL . masked-token - M masked-token - L masked-token - XL
o 0001 ° v 2
S ool /| oo a d 1 10 .
= 2 o ° oo
= e 00005 o 05 °) °
uuuuu <
00000 d <o 0. <
E b—0| 00000 2! 2 e 1% 0.0{Cf o} o} d
Woooes) o000z | d Wi-os o
] o0c 20 006 20 o0k oo o ok 200k 05 200k ook 200k
c Gifusion =M difusion - L _ Jdiftusion - XL e diffusion - M diffusion - L diffusion - XL
o o o 00
< o ° <
T 000 0004
Y 0004 o 9] 2 25 Q
£ 0002{_ & 2 o 0 ' 'Y o £ R e » 2 pe o o°
N © P of om| /e o002 & 8 e o e o 2 50 o
o g 00 o 9 § e o o _
= oo [=) ° - ° 7 o
7 S— 000 w L2 L) L]
o 100k 200k 300k 400k 500k 100k 200k 300k 400k 500k 100k 200k 300k 400k 500k 100k 200k 300k 400k 500k

100k 200k 300k 400k 500k

Dataset Size

100k 200k 300k 400k 500k

Dataset Size

Figure 6: Impact of EMA. EMA significantly improves FID for diffusion models but hurts token
based approaches. On CLIP score the effect on diffusion models stays consistent however for token
based methods the influence is negligible.

5.3 EMA ablations

Among the various training practices distinguishing these methods, the use of an exponential moving
average (EMA) on the model weights stands out. In the diffusion literature [Karras et al., 2024}
2022 |Peebles and Xie, 2023, [Esser et al., 2024] EMA is an essential component of the training
pipeline. In contrast, this practice has not received equivalent attention in other approaches. The
differential impact of EMA is evident in Figure[6] For token-based approaches, the influence of EMA
is either negligible or, in some cases, harmful, whereas for diffusion models, it is beneficial almost
universally. We hypothesize that the impact of EMA may be linked to the learning rate schedule,
where decaying schedules similarly minimize weight variation towards the end of training. To test
this hypothesis, we conducted an ablation study on an M-sized next-token prediction and diffusion
model trained over 250k steps. Our findings verify our hypothesis that EMA enhances performance
under a constant learning rate schedule; however, it does not exceed the improvements seen with
a cosine decay learning rate schedule. This implies that future diffusion models should consider
substituting the EMA for a cosine decay learning rate schedule if they are willing to pay the cost of
decreased training length flexibility. Results from this ablation study are presented in Table 5]

5.4 Limitations

Our analysis has several limitations which result from resource limitations and project scope. We
only investigate pretraining whereas most production systems utilize a progression of pretraining,
finetuning, and distillation stages. We do not investigate high resolution images. We only measure
loss and perceptual metrics and leave out an analysis of utility for potential downstream tasks. There
are many others approaches that we leave out such as other discrete diffusion approaches [Austin et al.|
2023, Pernias et al.| 2023]], causally masked token prediction [|[Aghajanyan et al.,[2022]], and many
more. We choose most hyperparameters by following past work instead of exhaustively sweeping

Objective LR schedule EMA FID CLIP

Next-token constant X 81.976 0.2208
Next-token constant v 79.571 0.2230
Next-token cosine X 75.715 0.2256
Next-token cosine v 76.404 0.2257
Diffusion constant X 74.087 0.2153
Diffusion constant v 71.789 0.2166
Diffusion cosine X 69.284 0.2195
Diffusion cosine v 69.468 0.2192

Table 5: EMA and learning rate schedules. EMA on model weights improves results under a
constant learning rate schedule but does not exceed the gains from using a cosine decay schedule.

next-token masked-token diffusion
‘ Dataset size Two teddy bears of different colours sit on a surface. Model size

g s el kb B TS
b gl) T 510 e glegieg
2ERPE L. msas DO ¥ @

The large colorful flowers are purple, yellow, and pink.

l m .
o 5\

ﬁ\

Figure 7: Increasing training compute improves sample quality for all approaches. For each

approach and prompt we sample an image with all combinations of S, M, L model sizes and 50k,
150k, 250k dataset sizes. Going down or right in the 3x3 increases dataset and model size respectively.

to find the best configurations. And finally, we do not compare approaches using the best possible
autoencoders.

6 Conclusion

We conduct a compute-controlled analysis comparing transformer-based diffusion, next-token pre-
diction, and masked-token prediction latent image synthesis models. Our findings indicate that
token based methods, led by next-token prediction, achieve superior CLIP scores, indicating greater
controllability. In terms of FID, and therefore image quality, while next-token prediction is much
better at low training compute scales, scaling trends suggest it is eventually matched by diffusion.

We find that next token prediction has, by far, the best inference compute efficiency but this comes at
the cost of high latency in low data intensity settings. Based on our findings recommend diffusion
models when image quality and low latency is important; and next-token prediction for better prompt
following and throughput.

References

Armen Aghajanyan, Bernie Huang, Candace Ross, Vladimir Karpukhin, Hu Xu, Naman Goyal,
Dmytro Okhonko, Mandar Joshi, Gargi Ghosh, Mike Lewis, and Luke Zettlemoyer. Cm3: A causal
masked multimodal model of the internet, 2022.

Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning Hsu, Karen Hambardzumyan, Susan Zhang,
Stephen Roller, Naman Goyal, Omer Levy, and Luke Zettlemoyer. Scaling laws for generative
mixed-modal language models, 2023.

Ibrahim Alabdulmohsin, Xiaohua Zhai, Alexander Kolesnikov, and Lucas Beyer. Getting vit in shape:
Scaling laws for compute-optimal model design, 2024.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative
image transformer, 2022.

Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang,
Kevin Murphy, William T. Freeman, Michael Rubinstein, Yuanzhen Li, and Dilip Krishnan. Muse:
Text-to-image generation via masked generative transformers, 2023.

Dehao Chen, Chiachen Chou, Yuanzhong Xu, and Jonathan Hseu.
Bfloat16: The secret to high performance on cloud tpus, 2019. URL
https://cloud.google.com/blog/products/ai-machine-learning/
bfloatl16-the-secret-to-high-performance-on-cloud-tpus?hl=en.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning, 2022.

Aidan Clark, Diego de las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann,
Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, George van den Driessche,
Eliza Rutherford, Tom Hennigan, Matthew Johnson, Katie Millican, Albin Cassirer, Chris Jones,
Elena Buchatskaya, David Budden, Laurent Sifre, Simon Osindero, Oriol Vinyals, Jack Rae, Erich
Elsen, Koray Kavukcuoglu, and Karen Simonyan. Unified scaling laws for routed language models,
2022.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton,
Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme, Matthias Minderer,
Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin F. Elsayed, Aravindh
Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark Patrick Collier,
Alexey Gritsenko, Vighnesh Birodkar, Cristina Vasconcelos, Yi Tay, Thomas Mensink, Alexander
Kolesnikov, Filip Paveti¢, Dustin Tran, Thomas Kipf, Mario Luci¢, Xiaohua Zhai, Daniel Keysers,
Jeremiah Harmsen, and Neil Houlsby. Scaling vision transformers to 22 billion parameters, 2023.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis, 2021.

10

https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus?hl=en
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus?hl=en

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
glish, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow
transformers for high-resolution image synthesis, 2024.

Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman. Make-a-
scene: Scene-based text-to-image generation with human priors, 2022.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
free evaluation metric for image captioning, 2022.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration, 2020.

Yang Jin, Kun Xu, Kun Xu, Liwei Chen, Chao Liao, Jianchao Tan, Quzhe Huang, Bin Chen, Chenyi
Lei, An Liu, Chengru Song, Xiaoqgiang Lei, Di Zhang, Wenwu Ou, Kun Gai, and Yadong Mu.
Unified language-vision pretraining in 1lm with dynamic discrete visual tokenization, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models, 2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
and improving the training dynamics of diffusion models, 2024.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Kangfu Mei, Zhengzhong Tu, Mauricio Delbracio, Hossein Talebi, Vishal M. Patel, and Peyman
Milanfar. Bigger is not always better: Scaling properties of latent diffusion models, 2024.

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantization:
Vg-vae made simple, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer, 2017.

Pablo Pernias, Dominic Rampas, Mats L. Richter, Christopher J. Pal, and Marc Aubreville. Wuer-
stchen: An efficient architecture for large-scale text-to-image diffusion models, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021.

11

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan,
Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks,
Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron
Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu,
Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen
Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro,
Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch,
Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux,
Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d’ Autume,
Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas,
Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger,
Tason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol
Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu,
and Geoffrey Irving. Scaling language models: Methods, analysis and insights from training
gopher, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models, 2022.

Axel Sauer, Kashyap Chitta, Jens Miiller, and Andreas Geiger. Projected gans converge faster, 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pages 2256-2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2023.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning,
2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang,
Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, and Dumitru Erhan. Phenaki: Variable
length video generation from open domain textual description, 2022.

Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D. Co-
Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-dickstein,
Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale proxies for large-scale
transformer training instabilities, 2023.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan,
2022a.

12

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin

Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-rich
text-to-image generation, 2022b.

Lijun Yu, José Lezama, Nitesh B. Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong

Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, Alexander G. Hauptmann, Boqing Gong,

Ming-Hsuan Yang, Irfan Essa, David A. Ross, and Lu Jiang. Language model beats diffusion —
tokenizer is key to visual generation, 2024.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers,
2022.

13

Supplementary

A Discrete regularizers

To select a simple but performant vector quantization method for our discrete latent space, we
compare the classic vector quantization (VQ)|van den Oord et al.|[2018]] without additional complexity
like codebook reinitialization, lookup free quantization (LFQ) [Yu et al.| [2024]], and finite scalar
quantization (FSQ) Mentzer et al.|[2023]]. While training these autoencoders we observe interesting
differences in training dynamics with multiple crossing points between FSQ and LFQ for certain
metrics. We present those in Figure [§]| where we can see that FSQ often takes the lead in the beginning
phases of training but eventually gives it up to LFQ. We can also see that both of these methods
outperform classic VQ which struggles without additional aids.

14

30

— LFQ
— FSQ

)

- 20

rFID (

15+

10 o

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Step le6

26

254

241

EE—

PSNR (1)

22+

21+

20 ; T T ; . ,
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Step 1le6

0.5

0.4

::: S

0.1

LPIPS ({)

0.0

0.00 0.25 0.50 0.75 1.00 125 1.50 1.75
Step le6

Figure 8: Perceptual reconstruction metrics for various discrete regularization methods. Classic
vector quantization (VQ) struggles without tricks like codebook reinitialization. LFQ and FSQ
have different training dynamics, often trading the lead in the beginning phases of training which is
highlighted by the red X’s.

15

	Introduction
	Related Work
	Background
	Experimental Setup
	Network Architecture
	Training
	Sampling

	Results
	Training tradeoffs
	Inference tradeoffs
	EMA ablations
	Limitations

	Conclusion
	Discrete regularizers

